
Heart Disease Prediction

1st Phillip Pondo
Department of Computer Science

Stevens Institute of Technology
Rutherford NJ, USA
ppondo1@stevens.edu

2nd Jake Shinohara
Department of Computer Science

Stevens Institute of Technology
Hoboken NJ, USA

jshinoha@stevens.edu

3rd Klayton DalPra
Department of Computer Science

Stevens Institute of Technology
Rumson NJ, USA

kdalpra@stevens.edu

Abstract—In this project, we aim to predict the presence of
heart disease using machine learning algorithms based on patient
health data. The original dataset includes both categorical and
numerical variables such as age, sex, chest pain type, cholesterol
level, blood pressure, and exercise-related metrics. After cleaning
the data and encoding categorical features, we applied logistic
regression to classify patients as either having or not having
heart disease. The model achieved an accuracy of approximately
84 percent on the test set, demonstrating strong performance,
especially in identifying non-heart-disease cases. We normalized
continuous variables and balanced class weights to address class
imbalance and improve convergence. Major contributions of this
work includes determining which attributes positively impact the
model’s performances. We did this by using a mutual information
test to determine which features were not helpful for training
the models. We also used K-Nearest Neighbors imputation to
help with data pre processing. We trained two logistic regres-
sion models with different techniques to account for a binary
classification and one with a multiclass classification. We created
Principal Component Analysis (PCA) Projections to visualize and
analyze the performance of models. These graphics give insights
on certain models weaknesses. A Random Forest Model was also
implemented using the dataset which produced a model with
an Area Under the Curve (AUC) score of approximately 89
percent and an accuracy of approximately 84 percent. Lastly, we
implemented a Support Vector Machine model which resulted in
an accuracy of 85 percent and the lowest false negatives. We used
GridSearchCV hyperparameter tuning to achieve these results.

I. INTRODUCTION

Problem Statement: Heart disease is one of the leading
causes of death, and early detection can improve the patient
outcomes. Medical datasets often contain detailed clinical data
collected from patients, including symptoms, test results, and
demographics. While many models exist to detect whether
a patient has heart disease, few focus on identifying which
features should be included in the decision making. In this
project, we aim not only to classify patients as having heart
disease or not, but also to explore how data can be used and
omitted to enhance the accuracy of the diagnostic capability
of heart disease from machine learning models.

The data is originated from University of California,
Irvine’s Heart Disease dataset that was donated on 06/30/1998.
UCI indicates that the dataset is created from four databases:
Cleveland, Hungary, Switzerland, and the VA Long Beach
and consists of approximately 1000 sample patients. Fourteen
independent features of interest and the dependent feature of
heart disease and it’s severity are provided. Our team changed
the multiclass severity representation and converted it to a
binary class representation to determine if heart disease is

present or not, ignoring severity. Two of the independent
features were omitted by our team: restecg and fbs, after
evaluating their predictive power of heart disease to not be
significant enough to influence our models.

The team utilized three Machine Learning Models to help
gain insight on the classification of heart disease. The first
model used was logistic regression that returned an approxi-
mate 84 percent accuracy, 84 percent precision, an F1 score of
0.84, and recall score of 0.84 as well. The second model used
was a Random Forest that returned an approximate 89 percent
AUC score and 84 percent accuracy. When implementing the
random forest, mean decrease in impurity (MDI) was used to
consider the importance of each feature for the model and then
comparing the amount of added important features vs AUC
and accuracy helped determine the best amount of features
that should be used in the model. The third model used was
a Support Vector Machine (SVM). These three models were
chosen because they are known to handle binary classification
well.

II. RELATED WORK

The UCI Heart Disease dataset has been extensively ana-
lyzed using various machine learning algorithms to predict the
presence of heart disease. A review of existing solutions re-
veals several commonly employed models. These include Lo-
gistic Regression, Support Vector Machines (SVM), K-Nearest
Neighbors (KNN), Random Forest (RF), Artificial Neural
Networks (ANN), and Naive-Bayes Classification (NB), each
with distinct advantages and limitations.

Work related to predicting heart disease has demonstrated
that LR can achieve commendable accuracy, making it a
reliable baseline for heart disease prediction [1]. However,
its linear nature may limit performance when dealing with
complex, non-linear relationships inherent in medical data.

SVMs, particularly when combined with feature selec-
tion techniques like the Jellyfish optimization algorithm, can
achieve high accuracy in heart disease prediction. Nonetheless,
SVMs can be computationally intensive, and their performance
is sensitive to parameter tuning and kernel selection.

KNN has also shown effectiveness in heart disease classi-
fication tasks, but its performance can be degraded with high-
dimensional data, and it may be computationally expensive due
to the need to compute distances.

RF has also been reported to achieve high accuracy in heart
disease prediction tasks. The main drawback is its complexity,

which can lead to longer training times and reduced inter-
pretability compared to simpler models.

ANNs are capable of modeling complex, nonlinear rela-
tionships and have been applied to heart disease prediction. Al-
though they can capture intricate patterns in data, they require
large datasets for effective training and are often considered
”black boxes” because of their lack of interpretability.

NB classifiers have also been used in heart disease predic-
tion, but the strong independence assumption is often unrealis-
tic for medical data, potentially limiting the model’s accuracy.

Many of the existing solutions use all available data, which
can lead to inaccuracies or improper biases. When reviewing
existing solutions and related work, it became apparent that
feature selection will be critical to improving the accuracy of
predictions in this dataset. One study in particular where this
was evident was a study title titled ”Prediction of Heart Disease
Based on Machine Learning Using Jellyfish Optimization Al-
gorithm”, which focuses on enhancing heart disease prediction
through machine learning techniques. Using the dataset, the
researchers aimed to develop an ML model with superior
predictive performance. To mitigate overfitting associated with
high-dimensional data, they employed the Jellyfish Optimiza-
tion Algorithm for feature selection, known for its rapid
convergence and flexibility in identifying optimal features.
Among the four ML models tested (ANN, DT, AdaBoost,
and SVM), the Support Vector Machine classifier, trained on
the data set refined by the Jellyfish algorithm, achieved the
highest performance metrics: Sensitivity of 0.9856, Specificity
of 0.9837, Accuracy of 0.9847, and Area Under Curve of
0.9448. These findings suggest that optimizing the selection
of characteristics can significantly improve the precision of
heart disease predictions.

When determining our approach, we looked closely at how
narrowing down and selecting the most relevant features could
improve our predictions. We identified helpful and unhelpful
attributes regarding proper prediction, adding a new dimension
that helps to predict correctly despite the fact that patients have
conflicting attributes.

III. OUR SOLUTION

Our first approach consists of logistic regression for binary
classification (heart disease vs. no heart disease) as a baseline.
StandardScaler is used to normalize continuous variables, and
categorical features are numerically encoded. Class balancing
techniques are applied to ensure the model doesn’t bias toward
the majority class. Another approach used is a Random Forest
model that works well with binary classification. To ensure a
model that performs efficiently with good predictions for the
classification of our target variable of heart disease prevalence,
we can determine Gini importance (mean decrease in impurity)
of features and compare several Random Forest models with
varying number of features. In future iterations, we plan to
enhance our model by omitting features that negatively impact
the accuracy. This approach may help the model prioritize
learning patterns, which is highly beneficial in real-world
clinical decision support.

A. Description of Dataset

We use the UCI Heart Disease dataset, which includes
multiple patient records across different study origins. Each
entry consists of features such as age, sex, chest pain type,
blood pressure, cholesterol, fasting blood sugar, ECG results,
maximum heart rate, exercise-induced angina, ST depression,
the slope of the ST segment, number of vessels colored by
fluoroscopy, and thalassemia test results. The original label
(num) represents the stage of heart disease from 0 (no disease)
to 4 (most severe). The dataset contains both categorical
and numerical attributes, requiring pre-processing such as
missing value imputation, encoding, and normalization. The
dataset was pre-processed by converting categorical attributes
to numerical values.

• sex: Male = 0, Female = 1

• cp (chest pain type): typical angina = 0, atypical
angina = 1, non-anginal = 2, asymptomatic = 3

• fbs (fasting blood sugar): False = 0, True = 1

• restecg (resting ECG): normal = 0, st-t abnormality
= 1, lv hypertrophy = 2

• exang (exercise-induced angina): False = 0, True =
1

• slope (slope of ST segment): downsloping = 0, flat =
1, upsloping = 2

• thal: normal = 0, fixed defect = 1, reversible defect =
2

For missing fields, we utilized Mode Imputation and used
the most common value in each column for categorical at-
tributes. For values that were originally numerical, we use
Mean Imputation and filled in the missing fields with the
average value. These numerical values include:

• age: the patient’s age in years

• trestbps: resting blood pressure (in mm Hg) at admis-
sion

• chol: serum cholesterol level (in mg/dl)

• thalch: maximum heart rate achieved during exercise

• oldpeak: ST depression induced by exercise relative
to rest (an ECG measure related to ischemia)

When evaluating our categorical features, the Scikit-learn
library’s mutual info classifier function was utilized to deter-
mine each feature’s predictive power for our target value of
heart disease detection. A thresh hold for a MI score of being
less that 0.01 was used to determine if a feature was to be
omitted. The only two features below 0.01 were fbs at 0.008
and restecg at 0.005. Therefore, we omitted these features.

For continuous numerical features, correlation coefficients
were found for each independent feature’s correlation to the
target variable. A threshold of a coefficient’s absolute value
being less than 0.1 was used to determine if a feature should
be omitted. All features had a coefficient greater than or equal
to 0.1. Next, a correlation matrix was created to determine the
independent features correlation to each other. A threshold of

Fig. 1. Dataset Feature Distribution

a coefficient’s absolute value being greater than 0.7 was used.
If a feature met this threshold, it would be omitted to help
prevent overfitting in the models. All features were below the
threshold, so none were omitted.

After preprocessing and encoding all features, we applied
normalization to the continuous numerical attributes using
StandardScaler from Scikit-learn. This step standardizes
features by removing the mean and scaling to unit variance
(mean = 0, standard deviation = 1). It is especially important
for gradient-based models like logistic regression, as it helps
ensure faster convergence and avoids dominance by attributes
with larger numerical ranges.

The following continuous features were scaled: age,
trestbps, chol, thalch, oldpeak. Standardization was performed
after splitting the dataset into training and testing sets. The
scaler was fit only on the training data and then applied to
both training and test sets to avoid data leakage.

B. Machine Learning Algorithms

We chose logistic regression as our baseline classifier due
to its interpretability and speed. It is a supervised learning
model and suitable for binary classification and can also be
adapted for multiclass situations. Since our goal is to predict
heart disease, and our dataset provides us with patients heart
disease stages, we can implement both versions of logistic
regression.

A Random Forest model was used as well. This model was
chosen because it is well known for handling binary classifiers
well. For the amount of n estimators for the Random Forrest,
it was set to a limit of 100 since the dataset consisted of
approximatley 1000 samples in order to reduce overfitting of
the model. Mean decrease in impurity (MDI) was calculated
to consider the importance of each feature for the model.

Multiple Random Forest models were then trained with an
incremental amount of the ranked features,adding the most
important feature first and so on, and the performance of each
model vs the amount of features used was evaluated.

Finally, a Support Vector Machine (SVM) model was also
implemented to predict the presence of heart disease using the
clinical dataset. The dataset was preprocessed as mentioned
above, evaluated using various kernels, and further analyzed
using an ROC curve, classification scores, and hyperparameter
tuning via grid search. The Radial Basis Function (RBF)
kernel with a balanced class weight was used in the initial
implementation. After assessing its performance metrics, it
was compared to performance of SVMs with Linear and
Polynomial degree 3 kernels. Finally, a GridSearch was used
in order to try to identify which hyperparameters of the base-
line implementation (RBF kernel) could be tuned to improve
results.

C. Implementation Details

1) Logistic Regression: We split the dataset into 80 percent
training and 20 percent testing sets with stratification to
preserve class distribution. Feature normalization was applied
only to continuous variables to ensure that gradient-based
learning converges efficiently. We also used StandardScaler to
scale the numerical values so that the columns have a mean
of 0 and standard deviation of 1. This helps with making the
data more uniform and assists with convergence of the models.
We used Scikit-learn’s logistic regression with up to 5000
iterations to ensure convergence. To improve performance
on imbalanced data, we applied the class weight=’balanced’
option, which adjusts the learning based on class frequency.
We also used different solver methods based on the goal of the
model. We used liblinear for binary classification and lbfgs for
multiclass.

A crucial debugging step included removing irrelevant, or
low impact columns. Columns that scored very low on our
Mutual Information test were dropped and improved scores
by a percentage or two. Removing non predictive columns
like the ’id’ field drastically impacted the performance of
the model. Accidentally including this column during model
training created artificial patterns.

Another aspect I tested was the effect of regularization. In
logistic regression, the C parameter controls the strength of
regularization, which helps prevent overfitting by penalizing
large coefficients. Lower C values apply stronger regulariza-
tion, while higher C values reduce the penalty. I tested C values
of [0.01, 0.1, 1, 10, 100] and plotted the resulting accuracy for
each. For the binary model, the differences were negligible
and did not improve any metrics. However, for the multiclass
model, a C value of 1 produced slightly better metrics as
compared to a value of 0.01.

The final optimization technique I implemented for this
model was using the K-Nearest Neighbors algorithm for data
pre processing. Instead of filling in the missing values in the
data set with the most frequent option from each column, I
used the KNN algorithm to find similar patients based on other
features [2]. I then used the data from the similar patients
to replace the missing entry. This provides the model with

more realistic information, as the average value might not be
appropriate for each patient.

Model performance was evaluated using accuracy, preci-
sion, recall, F1-score, and confusion matrix. We also used
bar plots to visualize precision, recall, and F1-score per class.
These evaluations helped identify areas where the model was
under performing, particularly in attempting to detect the
specific stage of heart disease. A PCA projection helped show
that the multiclass logistic regression model was only able to
predict three out of the five stages. This was due to the data
not having any clear separation between classes 2 and 3.

Fig. 2. PCA Projection Binary Logistic Regression

Fig. 3. PCA Projection Multiclass Logistic Regression

2) Random Forest: For the Random Forest Model, the fea-
tures ranked based on importance were incrementally placed
into separate models to evaluate the performance of each
model vs the amount of features. For example, the first tested
model contained only one feature, the feature with the highest
importance ranking, then the second model used the highest
and second highest ranked feature and so on until 13 Random
Forest models were evaluated. Performance for the models
were based on Area Under the Curve (AUC) calculations and
Accuracy for each respective model. AUC and accuracy vs
Number of Features to help visualize what amount of features
were best for the model. Both AUC and accuracy start to
plateau at seven features which is a good indication for the

best number of features that should be used as selecting too
many additional features for a minimal percent increase in
AUC and accuracy can lead to overfitting in the model. The
Random Forest model utilizing the top seven highest ranked
features returned an AUC score of approximately 89 percent
and an accuracy of approximately 84 percent.

A confusion matrix for the selected Random Forest model
was created to further the understanding of the model and the
incorrect predictions it was making. Out of 184 predictions,
30 predictions were incorrect with 12 predictions being a false
positive (predicted the test sample had heart disease when they
actually did not) and 18 predictions being a false negative
(predicted the test sample did not have heart disease when
they actually did).

Fig. 4. AUC and Accuracy vs Number of Features for Random Forest

Fig. 5. Confusion Matrix for Random Forest Model with 7 features

3) Support Vector Machine: As in the other two ap-
proaches, the first step was cleaning and preparing the data
from the dataset. Missing values for numeric columns are
handled using the median, which we chose to offset the
presence of potential outliers. For categorical columns such
as cp, slope, thal, sex, and exang, missing values are imputed
using the mode. This distinction between numeric and cat-
egorical treatment emerged through iterative testing, as we
found improperly imputed categorical variables could break
downstream encoding steps. The target column num was
converted into a binary classification problem, where any
presence of heart disease is labeled as 1, and absence as 0.
Several categorical variables were then mapped into numeric
representations using domain-appropriate dictionaries. These
mappings are crucial for compatibility with SVMs, which
require purely numeric input. The dataset, fbs, and restecg
columns were dropped due to exploratory testing that revealed
minimal or redundant contribution to prediction.

Following preprocessing, the data is split into training and
testing sets with stratification on the target variable to preserve
class balance. Feature scaling using StandardScaler is applied
as Support Vector Machines (SVMs) are sensitive to feature
magnitudes. We determined that the scaling should be applied

after the split. This was to ensure that no information from the
test set leaks into the training process, which would artificially
inflate performance.

A Principal Component Analysis (PCA) was used as a visu-
alization tool to project the high-dimensional training data into
two dimensions, and to provide feedback on how distinguish-
able the classes are. The two principal components capture a
visible, though not perfectly clean, separation between the two
classes (0 = no heart disease, 1 = heart disease), indicating that
our feature engineering preserved enough structure in the data
to make the classes at least partially distinguishable. While this
doesn’t directly impact model performance, it was valuable
in affirming the decision to try a non-linear kernel, as linear
separability appears limited.

Fig. 6. PCA Projection of Training Data

A baseline SVM model was trained using the radial basis
function (RBF) kernel with ’balanced’ as the class weight
parameter to account for class imbalance and to ensure the
RBF does not just favor the majority class. We determined
the RBF kernel was a good starting point based on a few
key characteristics of the dataset. As noted in the PCA, the
class distributions are not cleanly separated by a straight line,
and the RBF can form flexible, curved boundaries around
class clusters. Additionally, with a modest number of features
like we have, the RBF is not likely to overfit the way it
sometimes can in high-dimensional spaces. The inclusion of
probability=True enables probabilistic outputs which we used
for ROC curve generation. This model performs reasonably
well and is visualized via confusion matrix and ROC curve. A
key insight here is that while accuracy is informative, the ROC
AUC provides a more holistic view of model discrimination.

SVM models using both linear and polynomial kernels
were used to serve as a benchmark. We anticipated the
linear kernel to underperform due to the non-linear nature of
the dataset, but it appears that its classification scores were
marginally better than that of the RBF kernel despite its lower
boundary flexibility. The polynomial kernel also had similar
classification scores using the default degree of 3, and would
need to undergo parameter tuning to avoid overfitting on a
relatively small dataset such as ours. Testing different kernel

types (linear and polynomial) confirmed that the RBF kernel
is best suited based on theoretical expectations, given the
non-linear nature of the dataset, and despite how similar the
accuracy and classification reports are.

The most significant improvement came from conducting
hyperparameter tuning via GridSearchCV. The preprocessing
and model were wrapped into a Pipeline, which ensured
that scaling is performed within each cross-validation fold to
prevent data leakage. The grid search initially used accuracy as
the scoring metric, but we later decided that ROC AUC is much
more appropriate than plain accuracy in a class-imbalanced
setting. The parameter grid is focused on tuning C, gamma, and
confirming the kernel as RBF. The narrowed values (C: [0.1,
0.5, 0.8] and gamma: [’scale’, 0.1, 0.5, 0.8]) were informed
by earlier tests that showed poor generalization from overly
aggressive values like C=100 or gamma=1. The final tuned
model shows a modest but consistent improvement in both
accuracy and ROC AUC, confirming that the added tuning
complexity was worth it.

IV. COMPARISON

This section includes the following: 1) comparing the
performance of different machine learning algorithms that you
used, and 2) comparing the performance of your algorithms
with existing solutions if any. Please provide insights to reason
about why this algorithm is better/worse than another one.

A. Logistic Regression vs. Support Vector Machine

The Logistic Regression Binary model performed slightly
worse overall compared to the SVM model. A crucial metric
to consider is the recall for class 1. SVM had a better recall
with 91%, which means the model was better at correctly
identifying patients with heart disease. This higher recall is
ideal in real scenarios. The logistic regression model had 15
false negatives, while the SVM only had 9. Using the SVM
would be a better choice for predicting heart disease as it would
reduce the number of patients who think they are healthy when
they are not. While the Logistic regression binary model is a
good baseline because it is fast to train and easy to tune, the
SVM is better for the real world because it handles non-linear
boundaries.

Comparing to a top voted project by Fahad Rehman using
the same dataset as ours [3], the logistic regression model that
we optimized performed significantly better. Rehmans logistic
regression model was determined to have an accuracy of 50%.
The poor performance of their model seems to result from the
training of a multiclass model without any multiclass specific
techniques. Since we adjusted the dataset to account for a
binary classification, we achieved significantly better results.
For a fair comparison, I will compare Rehmans work to our
multiclass model as well. With only a few optimizations, our
multiclass model had an improved accuracy at 57%. This top
rated project shows the importance of understanding the data
that is being worked with. Our visualizations and optimizations
show how we understood which techniques to apply to extract
the most performance from these models.

B. Random Forest vs. Logistic Regression

When considering the performance between the Random
Forest model and the Logistic Regression model, they pre-
formed quite similarly with slight differences with predictions.
The accuracy of the Random Forest model and Logistic
Regression model were both approximately 84 percent. When
considering the types of predictions made by each model,
out of 184 predictions the Random Forest model made 30
incorrect predictions, 18 of which were false negatives and
12 that were false positive, while out of 184 predictions the
Logistic Regression model made 29 incorrect predictions, 15
of which were false negatives and 14 that were false positive.
Out of 102 subjects that were positive for heart disease in the
testing data for the Logistic Regression model, it classified
87 of the subjects correctly. Out of the remaining 82 subjects
that did not have heart disease, it correctly classified 68 of
them. When compared to the Random Forest model, out of
109 subjects that were positive for heart disease in the testing
data, 91 were correctly classified to have heart disease. Out of
the remaining 75 subjects that did not have heart disease, the
Random Forest classified 63 were correctly classified to not
have heart disease.

After looking closer at the predictions made by the Ran-
dom Forest model and the predictions made by the Logistic
Regression model, we see that both their F1 scores for clas-
sifications of the presence of heart disease are approximately
86 percent. The main difference was found in the F1 score
for classification of no heart disease. The Random Forest
model had an F1 score of approximately 81 percent while the
Logistic Regression model had an F1 score of approximately
82 percent. Although the difference is not large, this still makes
the Logistic Regression model more ideal for classifying the
presence of heart disease.

C. Support Vector Machine vs. Random Forest

When comparing the performance of the Support Vector
Machine (SVM) and Random Forest (RF) models, the evalu-
ation metrics we observed showed that both models perform
well, but with distinct advantages. The SVM achieved slightly
higher overall accuracy at 85%, compared to the Random
Forest’s 83%. Additionally, SVM outperformed RF in terms
of recall for the positive class (91% vs. 81%), F1 score for the
positive class (87% vs. 84%), and ROC AUC (92% vs. 89%).
These metrics suggest that the SVM is particularly effective
at identifying true positive cases (patients who actually have
heart disease), which is critical in medical diagnosis, where
false negatives can have serious consequences. SVM’s higher
recall and F1 score also highlight its strength in catching more
positive heart disease cases, even at the risk of slightly more
false positives. Its higher ROC AUC demonstrates its ability to
distinguish between the two classes effectively across various
classification thresholds. The ROC curve for the tuned SVM
model visually confirms a high true positive rate at different
false positive rates.

The Random Forest model provides competitive perfor-
mance with notable strengths of its own. Though slightly
behind in overall accuracy and recall, it achieved a higher
precision score (88% vs. SVM’s 84%), indicating that when
it predicts a positive case, it is more likely to be correct.

This suggests that the RF model is more conservative in its
predictions, yielding fewer false alarms but potentially missing
more actual cases. Its performance remains strong despite
using a reduced feature set of seven variables, as shown in
the AUC vs. Number of Features plot, which illustrates that
predictive performance peaks early and remains stable with
fewer features, enhancing interpretability and robustness.

In summary, both models are effective in distinguishing
between patients with and without heart disease. However, the
SVM slightly edges out the RF in terms of recall and overall
balance, making it the more suitable option when maximizing
disease detection is the priority. On the other hand, Random
Forest offers advantages in precision and feature importance
insight, making it a valuable alternative when interpretability
or resilience to noise is more critical.

V. FUTURE DIRECTIONS

With an additional 6 months, we would improve our models
initially by gathering more data. We would combine datasets
and study the correlations and patterns that emerge with the
increase of information. For missing data, we could also test
other Machine Learning Model, like a Random Forest, to fill in
the missing values with values that fit the subject better based
on all their other values. We could essentially train a model
with the missing values as the prediction for the model and get
a more accurate representation of the missing data compared
to using Mode Imputation or Mean Imputation. We also could
train all our models to be more sensitive for predictions and
handle multi-class predictions based on the severity of the
diagnosed heart disease to help identify what subjects would
need medical treatment the most. We would like to experiment
with neural networks to explore how deep learning is able to
handle the problem of predicting heart disease.

VI. CONCLUSION

Using multiple machine learning algorithms, we trained
and optimized models with the goal of predicting heart disease
in patients.

Our random forest model had an accuracy of 84% with 18
false negatives. Although it ranks in last place, its performance
was impressive considering the limited dataset it was trained
with.

The logistic regression models were a strong baseline espe-
cially when paired with a K-nearest neighbor algorithm during
pre processing. The binary model had an accuracy of 84% and
15 false negatives. The multiclass model had a poor accuracy
of 57% due to its difficulty with differentiation between stage
1, 2 and 3 heart disease. It was able to differentiate between
no heart disease, stage 1 and very severe cases. Despite the
poor accuracy, the model had only 11 false negatives.

Our support vector machine model performed the best with
an accuracy of 85% and only 9 false negatives. This model was
more difficult to tune, but the effort resulted in a more reliable
prediction, and the most suitable algorithm for this problem. To
further improve this model, we would use a KNN or random
forest algorithm during pre processing to fill empty values with
more realistic numbers rather than column averages.

The problem of predicting heart disease was well addressed
and our models gave a realistic prediction.

The metrics of our models show promising results, demon-
strating that machine learning can effectively support early
heart disease detection and assist healthcare professionals in
making informed decisions.

REFERENCES

[1] A. A. Ahmad, “Prediction of heart disease based on machine learning
using jellyfish optimization algorithm,” MDPI, 2023. [Online]. Available:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378171/

[2] “Knnimputer — scikit-learn documentation,” https://scikit-learn.org/
stable/modules/generated/sklearn.impute.KNNImputer.html, accessed:
2025-04-15.

[3] F. Rehman, “Heart disease prediction using 9
models,” https://www.kaggle.com/code/fahadrehman07/
heart-disease-prediction-using-9-models/notebook, 2024, accessed:
2025-04-15.

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10378171/
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://scikit-learn.org/stable/modules/generated/sklearn.impute.KNNImputer.html
https://www.kaggle.com/code/fahadrehman07/heart-disease-prediction-using-9-models/notebook
https://www.kaggle.com/code/fahadrehman07/heart-disease-prediction-using-9-models/notebook

	Introduction
	Related Work
	Our Solution
	Description of Dataset
	Machine Learning Algorithms
	Implementation Details
	Logistic Regression
	Random Forest
	Support Vector Machine

	Comparison
	Logistic Regression vs. Support Vector Machine
	Random Forest vs. Logistic Regression
	Support Vector Machine vs. Random Forest

	Future Directions
	Conclusion
	References

